Implications of the day versus night differences of water vapor, carbon monoxide, and thin cloud observations near the tropical tropopause
نویسندگان
چکیده
[1] There are some interesting day versus night differences in the water vapor and carbon monoxide concentrations near the tropopause over tropical land and ocean from 4 years of EOS Microwave Limb Sounder (MLS) observations. To interpret these differences, the diurnal cycle of deep convection reaching near tropical tropopause summarized from a decade of tropical rainfall measuring mission (TRMM) observations. We also present the diurnal cycle of the cold point tropopause temperature and height derived from 2 years of constellation observing system for meteorology ionosphere and climate (COSMIC) GPS temperature profiles, the day versus night differences of occurrence of thin clouds from 2 years of cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) and 16 years of stratospheric aerosol and gaseous experiment (SAGE) II. In the tropical upper troposphere, day versus night differences of water vapor and carbon monoxide are consistent with the diurnal cycle of the vertical transport of water vapor and carbon monoxide–rich air from the surface by deep convection. However, in the tropical tropopause layer (TTL) over land, day versus night differences of water vapor concentration are more consistent with the diurnal variations of temperature in a saturated TTL, which is related to the diurnal cycle of cooling in the TTL induced by deep convection. The day versus night differences of occurrences of thin clouds in the TTL are also consistent with the freeze drying, controlled by the diurnal cycles of temperature in the TTL.
منابع مشابه
How do the water vapor and carbon monoxide ‘‘tape recorders’’ start near the tropical tropopause?
[1] This paper evaluates geo-seasonal relationships in tropical deep convection using radar and infrared data from Tropical Rainfall Measuring Mission (TRMM), near tropopause thin clouds from Stratospheric Air and Gas Experiment (SAGE) II, water vapor and carbon monoxide (CO) from the Earth Observing System (EOS) Microwave Limb Sounder (MLS), and the tropopause temperature from National Center ...
متن کاملShort circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau.
During boreal summer, much of the water vapor and CO entering the global tropical stratosphere is transported over the Asian monsoon/Tibetan Plateau (TP) region. Studies have suggested that most of this transport is carried out either by tropical convection over the South Asian monsoon region or by extratropical convection over southern China. By using measurements from the newly available Nati...
متن کاملKeith: Inferences from the Isotopic Composition of Water Vapor
Air may cross the tropical tropopause either by gradual ascent or in localized episodes associated with convection. While observations demonstrate that water vapor mixing ratios of air entering the tropical stratosphere are consistent with the mean tropical tropopause temperature, they do not resolve key mechanistic questions, such as the relative contribution of gradual or episodic transport, ...
متن کاملObserved Increase of TTL Temperature and Water Vapor in Polluted Clouds Over Asia
Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport from the troposphere to the stratosphere and over which Asian pollution prevails: South and East Asia during boreal summer and the Maritime Continent du...
متن کاملIsotopic composition of water in the tropical tropopause layer in cloud‐resolving simulations of an idealized tropical circulation
[1] The processes that fix the fractionation of the stable isotopologues of water in the tropical tropopause layer (TTL) are studied using cloud‐resolving model simulations of an idealized equatorial Walker circulation with an imposed Brewer‐Dobson circulation. This simulation framework allows the explicit representation of the convective and microphysical processes at work in the TTL. In this ...
متن کامل